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Abstract ber of links directly, due to the fact that it may affect net-
work performance and the difficulty of handling the massive

There has been considerable interest over the last few yeargounts of generated data. Furthermore, if the network-of in
in collecting and analyzing internet traffic data in ordeets terest spans several subnets, assistance from one préavider
timate quality of service parameters such as packet logs rafnot enough. For these reasons, active network probingsadfer
and delay distributions. In this paper, we focus on fast ar@ood alternative. This means injecting small amounts &f tra
efficient estimation methods for network link delay distrib fic on a network at easily accessible endpoints (sources) and
tions based on end-to-end measurements obtained by probimgnitoring its end-to-end performance as it travels to othe
the underlying. We introduce a rigorous statistical frarmgw  €ndpoints (receivers). These active measurement schemes
for designing the necessary probing experiments and exafllow one to monitor network performance characteristics,
ine the properties of the proposed estimators. The proposéfile at the same time minimally interfering with the net-
framework and the resulting methodology are validated ugork. The challenge is tdeconvolvéhe end-to-end informa-

ing data collected on the University of North Carolina (UNC)Yion to make inferences about individual links in the netivor

local area network. . ) . o
In this paper, we introduce a discrete statistical modeéfor

timating link delay distributions based on active probirfg o
) o the network. We consider several techniques for fitting this
1 Introduction and Motivation model. In particular, we focus on the following two issues:
(i) conditions required for the probing experiments thadgu
Over the last decade, computer networks have experiencgstee ainique solutiorto the deconvolution problem and (ii)
an exponential growth in terms of the number of users, thiast estimation techniques that allow frequent monitoiing
amount of traffic, and the number and complexity of the apshort intervals and that also can estimate the probabilitie
plications. Another important feature of such networks isarge link delays. Our main goal will be to evaluate the model

their multi-layered structure and the lack of centralized€ and estimation scheme using real data collected at the UNC
trol; the latter, has enabled service providers to devetap ausing Voice-over-IP equipment.
offer a rich variety of applications and services at différe
quality-of-service levels. On the other hand, the decéntra
ized nature of the environment makes it very difficult to as-
sess network performance. Furthermore, traditional aqueui 2 Framework
and traffic models do a poor job of capturing the complex-
ity and characteristics of network behavior This has led tf this section, we discuss the modeling framework used for
the emergence afietwork tomography- an area that uses solving the active delay tomography problem. Specifically,
active and passivetraffic measurement schemes to quantifyve introduce the logical topology used for conducting a to-
the performance of large-scale networks. An increasiny bognography experiment, the probing schemes employed for ob-
of literature has appeared that deals with tomographyeaelattaining the path level delay information, and the stocleasti
problems [1, 2, 3, 4, 5, 6]. assumptions underlying the obtained measurements. Fer eas
o o . ) of presentation, we focus on single source tomography exper
In many situations, it is impractical to monitor a large NUMiments, although the proposed framework can easily handle
IStatistical Sciences Group, Los Alamos National Laboyatdros ~Multi-source experiments.
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3This research was supported in part by NSF grants CCR-03286@ \We describe a network as a graph with computers, routers,

DMS-0204247. The authors would like to thank: Jim Landwelerraine  and hubs serving as nodes and the links between them serving
Denby, and Jean Meloche of Avaya Labs for making their Expertool as edges. Because of our focus on active probing from a single

available for VoIP data collection and for many useful d&gians on network f lusivel . h K
monitoring; Yinghan Yang for assistance with data collattiJim Gogan and source, we focus exclusively on representing the network as

his team from the IT Division at UNC for their technical supgia deploying @ tree: a directed, acyclic graph in which each node except
the ExpertNet tool on their campus network, for troublesimgohardware  the source has a single parent. See Figure 1 for an example.

problems and for providing information about the structanel topology of _ : ;
the network; Don Smith of the CS Department at UNC for helpisgestab- Forma”y’ let7 = {V’ 5} be a tree with node sét and link

lish the collaboration with the UNC IT group; and Steve Marfor many Setg_- The nodes will follow a Canonif:al nl_meering scheme
helpful comments during the course of this research. starting from the root node 0. Each link will be named after




its terminal node.
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2.2 EXpe”mentat'on . ) . Figure 2: Traffic traces of end-to-end delay collected on the UNC
The data collection is based upfiexicastprobing [2]. This LAN and a corresponding CCDF plot.

methodology derives from the desire to combine the identi-

fiability guaranteed by multicast schemes with the more sim-

plistic data and algorithm complexity arising in smallepex  Despite this nonparametric component, each link delaly stil
iments. The main idea is to probe the receiver set in groupg@llows a multinomial distribution, which in turn allowsest-

In this paradigm, multicast schemes are a special case. d&rd estimation tools to be extended in a fairly straighéond
flexicast scheme consists of experiments involving grodips g1anner.

receivers of different sizes. Each experiment consists of a ) ) )

series of probes simultaneously sent to each member of thB€ actual observation made on some receiver nosi,. =
group using multicast probing or back-to-back unicast probX1 + - -- + X;-. This is the sum of the link delays along the
ing. The observed data for an experiment viitteceivers are riath from the source to the receiver. The goal is the estimate
a set ofk-tuples of end-to-end delays where each end-to-erfiP@sed upon these end-to-end measurements.

delay is the sum of the delays occurring on each link. The

simultaneous probing induces correlations in the endatb-e 2-4 Identifiability

measurements due to the portion of the delay that results frd/Vith our modeling framework set, we can turn to our first
the shared path. result which describes how to design probing experiments on

atree in order to guarantee the estimation of the discrédg de

2.3 Stochastic Assumptions model.

Consider the traffic traces in Figure 2. One of the striking

features of the data is its heavy-tailed nature, as dernaigstr Proposition 1 Let C be a collection of probing experiments

in the corresponding CCDF plot 2. This feature is ofterand7 be a general tree network topology. For every internal

seen in other types of Internet related traffic such as packetdes € 7, let there be at least onee C such that: probes

counts or flow durations. Since delay is linked to packedt least two receivers and is a branching node for. For

counts, the heavy-tailed nature of the distribution does neach receiver-, let there be at least one € C such that

come as a surprise. Nevertheless, this must be taken into acoversr. These conditions are necessary and sufficient to

count when choosing an appropriate model. This type of bguarantee that identifies the discrete delay distribution for

havior is consistent across different links and times. kinkevery link in7.

and times may exhibit different amounts and magnitudes of

sp|k|nes_s, but the_ overall pat_tern IS very consistent, rQuA detailed proof is given in [2]. The key concept is that the

stochastic model, introduced in [1], will be based on dis- .
grouped probing leads to correlated end-to-end resulte Th

cretizing the continuous delays based on a common bin siZe . . . .
. . correlations provided information about the shared paslys.
q. Let X}, € {0,q,2q,...,bq} be the discretized delay ac b b

" using all internal nodes as branching points, we get shared-

cur_nulated on I_mkk whereb is SOme maximum (for the re- path information from the source to every internal node.
mainder, we will drop the notational dependencegpnlet

ar(i) = P{Xy = i}. We make two independence assump-

tions. First, we assume that consecutive probes are indepen

dent of each other. Second, we assume that the delay a probe 3 Estimation Methodology

experiences along one link is independent of the delay it ex-

periences along any other link. This model makes no shapdis section will describe procedures for fitting the above
assumptions making it ideal for the type of data that we semodel. We will start with a brief description of maximum



likelihood estimation (MLE) and then move on to two extenWe consider next the complexity of an EM iteration. We start
sions of this procedure: local MLEs and large delay estimay looking at a single experiment. There &fé°! link de-

tion. lay outcomes for this experiment. For each of these, there
are|7 €| multiplications to compute the probability of the link
3.1 Maximum Likelihood delay outcome. There is also a single addition to tally up

The discrete, nonparametric modeling framework results ¥he end-to-end probabilities and a single division to cotepu
multinomial outcomes for the path-level experiments. Ouihe conditional probability of each outcome given the end-
observations consist of the number of times that each iddivito-end outcome. Finally, there af| additions to tally up
ual outcomej was observed from the set of outconiésfor  the sufficient statistics. Overall, this gives@§b/7 "1} oper-

a given experiment. We denote these coulifs Consider ations. The largest subtree sets the complexity for theeg-st

the likelihood equation: atO{b'Tl|} wherel is the largest experiment. The M-step is
trivial consisting of|£b| divisions.
W@ Y) =Y Niloglye(i; @), 1)
ceC geye Given the exponential complexity of this algorithm, anethe

Lo i o . . ._approach is desirable, especially when one is interested in
wherey.(y; ) is a path-level probability. This equation is monitoring the quality of several links in real time. In the

difficult to maximize directly. However, due to the inverse . . :
. o Bext subsection, we consider a faster algorithm based upon
nature of the problem, it corresponds to a missing data prob-

lem; if the counts for the unobserved link delays were know@stimating the delay distributions through maximum likeli
the maximization would be fairly straightforward as theklin ood of appropriately chosen sub-trees and then combining

: . . . the results.
outcomes are also simple multinomial experiments. As a re-

sult, the expectation-maximization (EM) algorithm is a-nat

ural candidate in the present setting for computing the max:2 CGrafting _ _
imum likelihood estimates. Only the the sufficient statisti V& consider an alternative to the full EM: computing the lo-

for each link need to be computed: the counts for the nunf@l MLE on the subtrees and combining the results in a pro-
ber of times thatX;, took on each value. The E-step can b&€SS called peeling (so called because we will use a pagth-lev

broken into two parts. Assume that we have some param(éi_stribution and the distribution of a subpath to solve far,
ter vector@>~ 1. First, we compute the expected number opeel away, the distribution for the other subpath). We call
times each link delay vectaF, occurred. this combination of trees grafting. In essence, we treah eac

B experiment as a multicast experiment on the probing subtree
N P{Xc =z ) We use the EM algorithm to solve for the MLE of the logical
A Ve _ 2 (1) Y (2) links on this subtree and then peel to get estimates foriitdiv
P{Ye =yj(a)} . ) . \
_ual links. For collections of bicast (where probing paclets
Then, we use these values to compute the number of timgsnt to two receiver nodes) and unicast (one receiver node)

that probes on link had a delay of units. experiments, this scheme scales very well because the EM al-
() _ e (2) gorithm is applied to a series of three-link, two-layer free
My = Z Z Nz (3) Based on numerical experiments considered in [2], increas-

cCCheT® TEX Cimp=i ing the number of bins on a the links increases the average

We also need to keep track of;, which is the total number iterations approximately linearly while adding links ieases
of probes that crossed lirkk The M-step is quite simple once the required iterations exponentially. This local scheakes

the sufficient statistics have been imputed. advantage of this fact by trading links for bins.
a(i)® = LM,SZZ.) (4) We will explain the details using just bicast and unicast ex-
my periments. First, consider a bicast experiment and theesibt

that it probes. Let the trunk hawelinks and the branches
The computationally challenging aspect in our setting is thavel; andi, links respectively. The subtree has just three
partition the observed end-to-end delays into the set of paegical links with varying numbers of bins on each: the trunk
sible link delay combinations. The details of this procedurhast(b+ 1) bins and the branches hayéb+ 1) andlz(b+1)
are covered in [2]. We note that this differs from previoudins. We apply the EM algorithm to this logical subtree and
estimators in two ways. First, the estimator is built for thesolve for its MLE. This is done for all of the experiments.
flexicast probing of which multicast is a special case. Fur-
ther, the maximum likelihood approach has advantages witAdividual links can be identified in several ways. We will
regard to efficiency. Thus the MLE presented here results fliscuss top-down peeling. Because the same identifiability

more precise estimates for multicast data than previous prePnditions apply, at least one pair must split at node 1 and
cedures. at least one of the local MLEs must give us an estimate for

link 1. At least one experiment gives us the local MLE for
The maximum likelihood estimates can be shown to poshe path from the root node to every child of node 1. The
sess all the desirable statistical properties; namely, #me individual links can then by identified through peeling. hi
strongly consistent, asymptotically normal and fully ééfid.  process continues down the tree identifying each link. Bher



ceivers covered by bicast experiments can be identifiedeas tfor zero) bin. This process is equivalent in some ways to tail
branches in a subtree or by peeling from the branches. The estimation.
ceivers covered by only unicast experiments can be idemtifie
by peeling. In addition to solving a specific problem, using this proce-
dure improves speed in two ways. First, it reduces the em-
For this scheme, we favor a more sophisticated peeling megpirical estimate of the max deldy larger bin sizes lead to
anism than previously discussed. A better fixed-point type afewer bins. Additionally, this procedure takes advantafje o
gorithm arises from postulating an EM algorithm using imagthe above complexity calculation. The complexity of the EM
inary data. Imagine that we semdprobes across the path. algorithm in the worst-case scenario is based upon obggrvin
Form data by setting, = nm 2(d). The data are counts of at least one value for every possible end-to-end delay.dJsin
the number of times delaywas observed on the path for all a large bin size collapses the observations. For example, un
possibled In the E step, we want to compulé;, the expected der a certain bin size, the bulk of observations at some pair
number of times that delayywas seen on the unknown link. might range from (0,0) to (5,5) thus requiring the estimatio

After the z-th iteration, this is given by: scheme to operate on 36 bins. Increasing the bin size by a
factor of six collapses all of those bins into a single (00 o
(=+1) _ b aéz (1) servation while likely leaving the extreme delay from thiésta
M; Z ) niﬂ" (5) as individual observations. Thus, we obtain significant €com

(2
=0 mo2(i+ ]) putational gains.
whereﬁffg) is updated with each update@&z). Note that this
is not the quantity used to generate the data. Since we ob- _ _ _
tain our estimates by dividing/; by n, we get the following 4 Design of Probing Experiments
equation:
The importance of the identifiability condition previously

’ (z)(')al(j) o 6 mentioned is that it provides us with a set of conditions to
Z W(z)(l + ) mo.2(i +j) 6) constructa collection of probing experiments thatovably
J=0 702 identifies the individual link delay distributions. We debe

This equation is no longer based on our imaginary data afgxt such a procedure, based on the set covering problem.

previously mentioned scheme, this peeling functlon uses Aomprised of bicast and unicast schemes. E&ndi/ de-

spectively, for a given topolog¥ with edge set. Every
If multiple estimates are available for a link delay distib scheme € BUU can be represented by a vectdrof length
tion, they can be combined in various ways. Simple averagiry| —1 with elements:? € {0, 1}, where a 1 indicates that the
is one. A better method is weighted averaging based on tlseheme traverses nodand a0 that it does not. For example,
number of observations. Thus, if we have two estimates of the corresponding vector for the bicast scheni®, 3) for the
from experiments; andc,, we can combine them to get topology shown in Figure 1 is

OLQ(’L')(ZJFD

I e (%% = [111000000000000] .
1= (7)
ne +ne

o

We can then posit the following integer program, with deci-

sion variable
The grafting procedure also has several desirable asyimpto tI vanl %

properties. Itis consistent and asymptotically normaljtia minimize Z ¢ @)
not as efficient as the complete MLE. A more thorough treat-

ment of both the MLE and the grafting procedure is contained JGBUZZ s

in [2]. This paper also includes comparisons with other work s.t. Z w36 > 1, jel (9)
seB

3.3 Large Delay Estimation o i =k, jev—{0} (10)

Among the advantages of the discrete delay model and its es- seBUU

timation schemes is the ability to quickly estimate the prob € e 0,1}

ability of large delays. This information is very important

for capacity planning and performance estimation for appliThe first constraint captures the condition in Proposition 1

cations like Voice-Over-IP (VolP) telephony. By settingeth that every internal node needs to correspond to the splittin

bin sizeq to be some large delay of interest, such as a detmode of some bicast scheme, while the second constraint indi
mental threshold for VoIP quality, this framework can be-easates that every node in the tree must be covered atdeast

ily used to estimate the probability of a deteriorating dyal times. In the statement of the Propositios- 1, but for vari-

of service on each link. This model can usually be quicklpus reasons we may want to allow each link to be covered by
estimated since most of the mass is expected to be in the finsultiple probing experiments. Notice that we can modify the



last constraint and can require differential coverageififed through the collection of experiments sending about 500

ent links of the tree. Finally, it is worth noting that sinmrila probes to each pair in a single pass. We conducted exper-

ideas can be used for multi-source network topologies. iments over the course of several days in order to evaluate
both the network and the methodology.

The experiments presented here were conducted on March 1,
17, and 21 of 2005 (there exists a significantly larger col-
lection of similar data, whose analysis confirms the consis-
tency of our results). The first date should be a fairly typica
. _ . i . Tuesday. The second date is during Spring Break. The last
ing their network for Voice-Over-IP readiness. As part da§th date is the first Monday after Spring Break. On 3/1 and 3/17

test, Avaya Labs has supplied them with a system for Sim\’\?e have collections at 9:00am, 12:00pm, 3:00pm, 6:00pm
lating phone calls over their computer network. The system 4 9:00pm. On 3/21, we hav’e data for,8'00am ,10'00am'

ishgble tlo clfllectdpacket level informagoT to sy?ﬁhroniza}dm 12:00pm, 2:00pm, 4:00pm, 6:00pm, 8:00pm, 10:00pm, and
chine clocks and compute one-way delays. ThIS provides@ oam - For all three days, we choose a bin size ef

En:q_ue cL)Jprgrtunlty tlo 'mpf”ﬁe”t the I?b_?_\r’]e methOdShWhingOls. This bin size, while somewhat arbitrary, was selected
€lping to evaluate their network. The system has Ign .o jy jg 5 large delay on this network and several delays

gndpomts. For our proof—of-concept tests, we orgz_;\nlzmtheof this magnitude can lead to a noticeable degradation in cal
into the tree shown in Figure 3'. Nodg 1 is the main camp ality. This is an example of choosing a large bin size in
router and it connects to the Unlvers!ty gateway. Nodes 2 rder to estimate the probability of a troublesome delaye Th
and 9 are also large routers_ responsible for different W“ oal is assess the quality of the network upgrade it where nec
of the campus. The accessible nodes are all located in dor&?sary. While a more detailed analysis, using a finer grained
and oth_er university buildings. We_root the tree at Sittlarsobin would provide better estimates of tr;e mean and variance
Hall which houses the computer science department. of link delays, the most detrimental factor is large delay so
we make that our focus. We expect most of the mass to fall

5 Analysis of UNC Network Traffic

5.1 Large Delay Analysis
The University of North Carolina is currently engaged irttes
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1: Ciscokid on the zero bin, but are interested in how much lies beyond.
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3 Resnet From this analysis, we construct a picture of the probabilit
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o thocol the course of the day: Figures 4, 5, and 6.
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The present study involves the use of a single source for pre- %" i o

sentation purposes. The methodology presented can bg easil "o mwa ‘Tumwa "enosowoa
extended to multi-source probing and this is the subject of o °0";M o

current investigation. A more complete analysis of this net s o e oo owoa s nmowoa
work would naturally involve probing the network from each

of the endpoints. Figure 4: Probability of large delay on 3/1/2005.

The testing equipment simulates phone calls between enthis analysis is revealing in a number of ways. First, many
points. Although we cannot use the multicast protocol, simwbuildings (Venable, Davis, Rosenau, Smith, Greenlaw, and
lating simultaneous phone calls creates an appropriate baSouth) show a typical diurnal pattern. Each of these bujslin
to-back mechanism: the two packets making up the back-ts-administrative or departmental meaning that the majofit
back pair are sent within nanoseconds of each other. Prepagaers follow a regular 9 to 5 schedule. Other buildings show
tion delay was removed by subtracting the minimum observedsomewhat different pattern; either, a more uniform thieug
delay along each path from all of the delays collected alongut the day or even an opposite one. Hinton, for example,
that path. As a general experimental protocol, we probe the a large freshman dorm and thus the drop during the day
network in pairs using the following experiments: and increase at night are expected as the residents reduann fr
classes and other activities in the evening. This is insitreic
C=1{{4,5),(6,7),(8,10), (11,12), (13,14), (15,16), (17, 18>}'for several reasons. It provides an indirect method of vali-
This set of experiments satisfies the posited identifigbilitdation. The estimation procedure is locating patternsueat
condition. A single probing session consists of two passexpect to see. This is a strong indication that the methodol-
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ogy uncovers patterns witnessed in other studies of loeal ar
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A second measure of validation is found by comparing the
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propagate to large sections of the campus network.

5.2 Detailed Analysis

Capacity planning problems also rely on good knowledge of
sample summaries like the mean, median, and variance. To
estimate these well, a finer grained solution is required. To
demonstrate the effectiveness of the methodology for produ
ing this type of solution, we repeated the analysis for 31 us
ing a bin size 10 times smaller than above. Figure 7 contains
the partial results of this analysis. These figures have tsie fi
20 bins of the distribution for links 9, 13, and 17 correspond
ing to a core-to-core link, a dorm link, and a departmental
link. The more detailed distributions can be used to compute
means and variances. The median can be located or bounded
quite easily by simply examining the distributions. Furthe
the complete distributions demonstrate the same diurnal pa
terns seen above. For example, the distributions for link 17
are much more clustered at the lower levels after the work
day is complete.
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Figure 7: Distribution for 3 links throughout 3/1 using a bin size
.00001s.

Old East, Hinton, and Craige are dorms. The second collec-
tion of data taken during Spring Break reveals almost ncelarg

delays in three out of four of these buildings. This is an ex-

6 Concluding Remarks

pected outcome as most of the dorm population was absent
during that period. The other buildings also show reduceéd/e have discussed several aspects of the network tomogra-

large delays. The Hinton dorm is especially interestingg;ei

phy problem. First, we have introduced a suitable model-

it experienced very little congestion over the break, buga s ing framework that is appropriate for capturing the unique
nificant increase to pre-break levels on the first day back. Ttaspects of bursty network traffic. Additionally, severdi-es
ability to track a known campus event again provides a strongation schemes are presented that focus on fast estimation
indication of the methodology’s success. Finally, the itlssu and estimation for large delays. Finally, as a demonstratio
exhibit a strong degree of consistency. Many of the monbf these techniques we have presented a real data analysis.
tored buildings show similar patterns during the threeemll Such analysis is still fairly novel in the area of active tano

tion times. Furthermore, these patterns are in agreemdémt wiraphy as the tools for collection are not yet widely avaiabl

previous data collections examined elsewhere [2].

Based on this analysis, we have strong reason to believe that
the methodology presented is a useful tool for assessing and

Active probing also allows us to evaluate the quality of thenonitoring network performance.

network. Many of the building links would probably re-

quire upgrades in order to support delay sensitive applica-

tions. Some of the departmental and administration bugklin
(Smith and South) show a tendency to have large delays even
without additional traffic. Further, one of the interior eeto-
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